

Page 1 of 22

ispython.com

UCL/CAS Training for Master Teachers and Teachers

Algorithms and Programming Module 1

“Would you tell me, please, which way I ought to go from here?"
"That depends a good deal on where you want to get to."
"I don't much care where –"
"Then it doesn't matter which way you go.” --
- Lewis Carroll, Alice’s Adventures in Wonderland &Through the Looking-Glass

WORKBOOK 2

PATTERNS & SYMMETRY

ACTION GEOMETRY

UNPLUGGED PROGRAMMING

CONTROL STRUCTURE: REPETITION
 Addressed to Teachers
 Activities are graded: easy to hard – 0 to 5*. You should attempt every activity marked without

a star or marked with one *.

Page 2 of 22

ispython.com

CONTENTS

Programming control Structures 2: Repetition... 3

Action Geometry ... 3

The Repeat Control Structure in Unplugged Programming .. 4

Mission 1 Tracking and Stacking the Code ... 7

What’s in our Toolbox? ... 7

Explanation: Symmetry in the Code and in the Drawing .. 7

Mission 2 Read and Crack the repeat Code ... 11

Mission 3 Crack the Code by Drawing ... 12

Mission 4: Match your Drawings .. 16

Mission 5 Writing Programs to produce Drawings ... 18

Mission 6 Writing Programs to fit the Drawings ... 19

Mission 7 Patterns, Symmetry, Algorithms ... 20

What’s the Answer? And can you say How you did it .. 21

Explanation: Working it out, algorithmic thinking ... 21

Explanation: There’s More than One Way to Do It ... 21

Mission 8 Generalising Results .. 22

Explanation ** The Process of Generalising ... 22

Explanation *** A Different sort of Sequence .. 22

Explanation**** Generalising in Simple Algebra ... 22

Page 3 of 22

ispython.com

PROGRAMMING CONTROL STRUCTURES 2: REPETITION

Table 1 (extract) from Workbook 1

Return
Program

?

9 * fd1 lt fd1 rt fd1 lt fd1 rt……program(3) yes
10 * fd1 lt fd1 lt fd1 fd1 lt fd1 lt fd1……

program(4)
yes

11 * fd2 lt lt fd2 lt lt…………program(1) yes
12 * fd1 lt fd1 lt fd1 lt fd1 lt…………

program(2)
yes

In the examples of Table 1 (above), you may have noticed the occurrence of repeat patterns in the
code. We have separated the code with space to help pick out the repeat patterns

In the code below, we have written the repeated patterns in program(1) and program(2) from Table
1 underneath each other (stacked them), to pick out the repeated pattern in sequence as follows in
program(1a).

 fd2 lt lt
 fd2 lt lt………………program(1a)

Another example of a building block, with a more obvious and extended symmetric repeated pattern
in the code and in the figure, is the square.

ACTION GEOMETRY

The symmetry of the square is reflected in the four equal sides and the four equal internal angles of
the figure. An extended similar definition applies to regular simple polygons, e.g. pentagon has five
equal sides with five equal internal angles as we shall see later in the Course.(Workbooks 9 and 10)
But, as we see in Table 2, the symmetry of the square is reflected in the code that we use to draw it.
The symmetry can be picked out in the ‘action geometry’ method we use to draw the square.

Page 4 of 22

ispython.com

Table 2. The Square

fd2 lt fd2 lt

fd2 lt fd2

fd2 lt fd2 lt

fd2 lt fd2 lt

Incomplete repeat pattern

program(2) completes
repeat pattern

A square with side of 2 paces

Both programs in Table 2 draw the same square but the RETURN program(2) has completed the
symmetry of the four ‘fd2 lt’ components, the four ‘forward and left turn’ symmetric code
components of the square in the ‘action geometry’.

In our unplugged programming, it helps to write the program on separate lines (stack them) to pick
out a repeating pattern in sequence. So program(2) we may stack as:

fd2 lt

fd2 lt

fd2 lt

 fd2 lt…………………program(2a)

which picks out the pattern repetition in sequence, and shows the symmetry of the program and of
the components of the drawing (for a similar example see the unit square in Figure 3: ‘draw a side and
turn the corner’) that it represents.

 An interpretation of the code as a physical characteristic, for example, a kind of motion, or

drawing a shape, helps to ‘crack the code’.

THE REPEAT CONTROL STRUCTURE IN UNPLUGGED PROGRAMMING

In our UPL toolbox, we have a repeat control structure, (as in most programming languages), which

enables us to take advantage of repeat patterns of code in sequence, by replacing the repetitive code

with just one repeat instruction from our toolbox. So far, if we take program (1), we have rewritten

it in the form program(1a), which makes clear what code is repeated, and how many times.

fd2 lt lt fd2 lt lt…………program(1)

Page 5 of 22

ispython.com

fd2 lt lt
fd2 lt lt………program(1a)

We take the repeated pattern of code and put it into our UPL toolbox repeat control structure as
follows in the form program (1b).

 repeat 2[fd2 lt lt]……………program(1b)

In UPL, (Unplugged Programming Language), when ‘Walking the Talk’ we might say:

“Repeat twice (pause), forward2--left-turn--left-turn,

(pause)”

In UPL, when “Chalking the talk”, the repeat instruction is written with the repeat pattern enclosed

in square brackets [], and is obeyed 2 times for program(1b) or 4 times for program(2b), see

below, (or as many times as the number after the repeat instruction) in sequence so that

program(1), (1a) and (1b) are all exactly equivalent programs.

Similarly, in the case of the square,

 fd2 lt fd2 lt fd2 lt fd2 lt…………program(2)

we may rewrite as

fd2 lt

fd2 lt

fd2 lt

 fd2 lt…………program(2a)

and finally program(2) becomes:

 repeat 4[fd2 lt]……………program(2b)

and program(2),(2a)and(2b) are exactly equivalent programs.

 We can use the repeat structure in our ‘Walk the talk’, if we make it clear what is to be

repeated (included in the repeat square brackets --- perhaps by intonation) and how many

times. In the examples below, we show the relationship between the repeat structure in all

three languages. The process of algorithmic thinking, and coding is essentially the same in

each languages. Any program we have written so far, can easily be transcribed to Scratch,

Python, Coffeescript or Logo. Being able to manage the necessary familiarity with the Scratch

and/or Python programming environments is the key to when to make the transition to a

screen language.

 The match of UPL to Scratch and Python showing the equivalent repeat structure in the

corresponding programs are shown in Figures 1 and 2. The full transition to Scratch 2.0 can be

undertaken at any time with the help of Workbook 6.

Page 6 of 22

ispython.com

repeat 4[fd2 lt]

UPL program(2b)

Scratch program (2b)

Python program (2b)

Figure 2. Repeat Programming Structure

 In the mapping of a program in UPL to Scratch and Python a pace in UPL is equivalent to 50
pixels on the screen in Scratch or Python so fd2 in UPL maps to fd(100) in Python and the
‘move 100 steps’ block in Scratch.

repeat 2[fd2 lt lt]

UPL program(1b)

Scratch program(1b)

Python program (1b)

Figure 1. Repeat Programming Structure

Page 7 of 22

ispython.com

MISSION 1 TRACKING AND STACKING THE CODE

WHAT’S IN OUR TOOLBOX?

1. forward1: fd1
our pet/robot goes forward 1 pace, drawing a trail as it goes. On squared paper a pace is the
length of the side of a square. We can make it go forward any number of paces e.g.
forward3: fd3 our pet/robot goes forward 3 paces.

2. left turn: lt

 our pet/robot turns left through 90 degrees -- just that, no movement forward

3. right turn: rt

our pet/robot turns right through 90 degrees -- just that, no movement forward

4. repeat 2[code]
our pet/robot executes the code in the square brackets [] the number of times (2) stated.

EXPLANATION: SYMMETRY IN THE CODE AND IN THE DRAWING

A repeating pattern in the code may give rise to symmetry in the code, which may reflect symmetry
in the way the drawing was produced by the code.

 fd1 lt

 fd1 lt

 fd1 lt

 fd1 lt

repeat 4[fd1 lt}

Code for unit square

Building block: the unit square (Return program)

Representation of the four symmetric repeats of [fd1 lt]

Figure 3. Symmetry in the code and symmetry in the ‘action geometry’ of drawing

Look for repeated patterns of code in sequence for each program. (not all the programs have repeat
patterns) If you find a repeated pattern in sequence, stack the programs -- see program (1a) and
2(a) above. For this to be possible, the repeat patterns – the longer the better (3 or more
instructions) -- must be next to each other in the code and in sequence.

Page 8 of 22

ispython.com

1. In program(3) and program(4)below, stack the programs and label them as
program(3a) and program(4a). Complete the drawing for each program and crack
the code. Are they RETURN programs?

fd1 lt fd1 rt fd1 lt fd1 rt………program(3)

fd1 lt fd1 lt fd1 fd1 lt fd1 lt fd1……program(4)

2. Write the code as a repeat statement in program(3a) and program(4a) from
question 1, and label your programs program(3b) and program(4b) respectively.

3. Match the stacked code in Table 4 with the drawings in Table 5 and put the results in

Table 3

4. Write the repeat statement for each program in Table 4

Table 3

Table

4

1

2

3

4

5

6

Table

5

Page 9 of 22

ispython.com

Table 4. Repeat statements from the stacked code

Stacking the Code

Repeat Statement

1

fd1 lt fd1 rt

fd1 lt fd1 rt

2

rt fd1 rt

rt fd1 rt

3

lt fd2 lt

lt fd2 lt

4

fd1 rt fd1 lt

fd1 rt fd1 lt

fd1 rt fd1 lt

fd1 rt fd1 lt

fd1 rt fd1 lt

5

fd1 lt fd1 rt fd1 lt

fd1 lt fd1 rt fd1 lt

fd1 lt fd1 rt fd1 lt

fd1 lt fd1 rt fd1 lt

6

fd3 lt fd1 lt

fd3 lt fd1 lt

Page 10 of 22

ispython.com

Table 5. Line drawings with repeat patterns

A B C

D E F

Page 11 of 22

ispython.com

MISSION 2 READ AND CRACK THE REPEAT CODE

1. ‘Walk the talk’ and so crack the code in the repeat instructions in Table 6.

Table 6. Read and Crack the repeat UPL programs

RETURN
Program

?

1 repeat 4[fd2 lt]

2 ** repeat 2[fd1 lt fd1 lt fd1 lt fd1 lt lt]

3 repeat 4[lt]

4 repeat 2[fd3 lt fd1 lt]

5 repeat 2[fd2 lt lt]

6 ** repeat 4[fd1 lt fd1 lt fd1 lt fd1 lt lt]

7 ** repeat 2[fd1 lt fd1 lt fd1 lt fd1 lt rt]

8 ** repeat 3[fd1 lt fd1 lt fd1 lt fd1 lt rt]

9 ** repeat 4[fd1 lt lt fd1 rt]

10 ** repeat 2[fd1 lt fd1 rt fd1 rt fd1 lt fd1 lt

fd1 lt]

11 ** repeat 2[fd1 rt fd1 rt fd1 rt fd1 lt]

12 ** repeat 2[fd1 lt fd1 lt fd1 lt fd1 rt]

13 ** repeat 2[fd1 lt fd1 lt fd1 lt fd1 lt fd1]

14 ** repeat 3[fd1 lt fd1 lt fd1 lt fd1 lt lt]

15 **** repeat 4[repeat 4[fd2 lt] lt]

16 **** repeat 2[lt repeat 4[fd1 lt]

17 **** repeat 4[repeat 2[fd2 lt lt] lt]

18 *** repeat 2[fd1 lt fd2 lt]

*difficulty grading

Page 12 of 22

ispython.com

MISSION 3 CRACK THE CODE BY DRAWING

1. Draw the figures for the programs in Table 7, and so Crack the Code
2. Make sure you record for each drawing:

 A starting point and direction

 A path

 A finishing point and direction
3. State for each program if it is a RETURN program.

Page 13 of 22

ispython.com

Table 7: Read, Track and Crack the Code

repeat 4[fd2 lt]

** repeat 2[fd1 lt fd1

lt fd1 lt fd1 lt lt]

repeat 4[lt]

1 2 3

repeat 2[fd3 lt fd1 lt]

repeat 2[lt fd2 lt]
**

repeat 4[fd1 lt fd1 lt

fd1 lt fd1 lt lt]

4 5 6

Page 14 of 22

ispython.com

Table 7: (cont’d) Read, Track and Crack the Code

**

repeat 2[fd1 lt fd1 lt

fd1 lt fd1 lt rt]

**

repeat 3[fd1 lt fd1 lt

fd1 lt fd1 lt rt]

**

repeat 4[fd1 lt lt fd1

rt]

7 8 9

**

repeat 2[fd1 lt fd1 rt

fd1 rt fd1 lt fd1 lt

fd1 lt]

**

repeat 2[fd1 rt fd1 rt

fd1 rt fd1 lt]

**

repeat 2[fd1 lt fd1 lt

fd1 lt fd1 rt]

10 11 12

Page 15 of 22

ispython.com

Table7(cont’d): Read, Track and Crack the Code

**

 repeat 2[fd1 lt fd1 lt

fd1 lt fd1 lt fd1]

**

repeat 3[fd1 lt fd1 lt

fd1 lt fd1 lt lt]

 repeat 2[fd1 lt fd2

lt]

13 14 15

repeat 2[fd2 lt lt]

repeat 4[repeat 2[fd2

lt lt] lt]

repeat 4[repeat 2[fd2

lt lt] lt]

16 17 18

Page 16 of 22

ispython.com

MISSION 4: MATCH YOUR DRAWINGS

1. Compare and match your drawings for Table 7 with the line drawings in Table 9 and enter the

results in Table 8. For example, the repeat program in Table 7(2) produces the drawing in

Table 9(C).

Table 8.

Table

7

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Table

9

E

Table 9. Drawings for repeat programs

A B C

D E F

G H I

Page 17 of 22

ispython.com

Table 9 (cont’d) Drawings for repeat programs

J K L

M N O

P Q R

Page 18 of 22

ispython.com

MISSION 5 WRITING PROGRAMS TO PRODUCE DRAWINGS

Table 10. Drawings which can involve repetitive patterns

1 2 3

 * ***

4 5 6

** ** **

7 8 9

1. Write programs to produce the drawings in Table 10. Take note of the repetition in the
drawing and in your code. Build a program that uses as much repeated pattern as you can.
Stack the repeat patterns (the longer the better) and rewrite your programs with repeat
statements. Some drawings can be done in more than one way. (Drawings graded as 2*
or more will require some thinking).

2. * Some of the programs, which produce the drawings in Tables 9 and 10, are not
RETURN programs. Add instructions to the end of these programs to bring the red
arrowhead back to the starting point of the large white arrowhead and pointing in
the same starting direction to make the programs into RETURN programs.

Page 19 of 22

ispython.com

MISSION 6 WRITING PROGRAMS TO FIT THE DRAWINGS

Table 11. Plus sign, row of squares: different programs, symmetry

1 2 3

4 5 6

1. ***Write a program in UPL for the drawing of a plus sign in Table 11, starting with 11.1

Whichever point you start from, your pet/robot starting direction is to the right and your

program takes it from there.

2. ***Make your program into a RETURN program.

3. ***Take your starting point in 11.2 and draw the plus sign by turning left at the centre each

time you approach it. Write a program to draw the plus sign using the symmetry of the code

to make a repeat instruction. And make your program into a RETURN program.

4. *** Try a similar approach to program drawing 11.3

5. **** In 11.4 write the code to draw the figure. Then put the code in a repeat loop to repeat

the code twice. Crack the Code for the repeat instruction.

6. **** In 11.5, Write a program for the drawing. Symmetry? Is there a repeat pattern? Could

you program to add a third square in the row? And then turn it into a Return program as in

11.6

Page 20 of 22

ispython.com

MISSION 7 PATTERNS, SYMMETRY, ALGORITHMS

 We have seen how symmetry in drawings is reflected in repeat patterns in the code which

generates them. And how often this is related to RETURN programs. In this next mission, we
examine patterns in general and the idea of an algorithm which produces the pattern. Later in
the Course we shall be trying to recognise and identify patterns and symmetry in our coding to
discover and explore properties of regular figures in our ‘action geometry’ and in pictures that
we produce from our programs.

Identify the pattern in the following examples:

1) Replace the underlines with letters to make English words:

a) _ _ _ M _ T _ Y

b) P _ _ T _ R _ _

 These are patterns that might be found in a crossword. Search this page to find words that fit
the crossword clues a) and b).

2) What are the next 2 numbers in the following sequences?

a) 1 2 3 4 5 6 …

b) 2 4 6 8 10 12 …

c) 1 3 5 7 9 11 …

d) *0 2 4 6 8 10 …

e) 4 8 12 16 20 24 …

f) 5 9 13 17 21 25 …

g) 1 4 9 16 25 36 …

h) *3 5 7 9 11 13 …

i) **3 6 12 24 48 96 …

j) **2 4 8 16 32 …

k) **1 3 7 15 31 …

Page 21 of 22

ispython.com

WHAT’S THE ANSWER? AND CAN YOU SAY HOW YOU DID IT

EXPLANATION: WORKING IT OUT, ALGORITHMIC THINKING

 Can you say how you worked out the answer in each case? That’s a start to --- algorithmic
thinking.
What is the secret ‘code’ for, or ‘way of working out’, the underlying pattern in each
sequence? Saying how you worked it out is sometimes more difficult than the actual
working it out, but making this explicit is the process of devising an algorithm that may serve
as a basis for a program to perform the task.

So in a) we might say:
Start with 1, and that is the first number. The next number you get by adding 1 to the previous
number and so on … This is part of the set of integers or counting numbers that we use every
day.

In b) we might say:
Start with the counting numbers 1, 2, 3, 4, 5 … multiply each by 2 to get the sequence in b)

1 x 2 2
2 x 2 4
3 x 2 6
4 x 2 8
………………..

This looks like the 2 times table! What we are trying to do is recognise how we get from 1, 2, 3,
4,… to the sequence b) 2, 4, 6, 8, … which of course is the operation of the 2 times table.

In effect, we are taking the numbers 1, 2, 3, 4, … and doing the same thing to each one to
produce another sequence. This doing the same thing to each number is the algorithm that we
are working out which produces this new sequence b).

3) In question 2), the second number in each sequence is: b) 4, c) 3, d) 2, e) 4, f) 5, g) 4,
h) 5, i) 6, j) 4, k) 3. How do you ‘get’ these second numbers from 2, (the second number in 1, 2,
3, 4, …)?
 We will find a different algorithm for each sequence.

 4) What is the 4th number in each sequence? How do you get these numbers from 4?
 5) In b) you do the same thing to 2 as you do to 4. You multiply them both by 2 to get the numbers
in b). So what is the 7th number in each sequence a) to k). And what did you do to the 7 for each
answer.

EXPLANATION: THERE’S MORE THAN ONE WAY TO DO IT

In trying to solve a problem in computing, we will often come up with more than one way of tackling
a problem --- we call it algorithmic thinking. Deciding which algorithm/program is better or more
effective, and how well it does the job, we call evaluation.
6) * In question 1, there is more than one solution that satisfies the crossword question as it is

asked. Can you find another solution?

Page 22 of 22

ispython.com

MISSION 8 GENERALISING RESULTS

EXPLANATION ** THE PROCESS OF GENERALISING

1) ** generalising: In a) The 5th number is 5, the 7th number is 7, we can say what any
number in the sequence is, because we know how to work out the numbers that make up
the pattern in the sequence. We start with 1 as the first number in the sequence and then
add 1 to get the next number, and add 1 to that to get the next number and so on…

 In b) The 5th number is 10 --- how does 10 come from 5?
The 7th number is 14 --- how does 14 come from 7?

Is the way that we get 10 from 5 the same as the way we get 14 from 7?

If so, then this way is possibly the algorithm. We may need to test it with another

number to see if it works for more items in the sequence.

 What are the 5th and the 7th numbers in sequences c) to h)? How did you do it? Describe the
algorithm for each sequence.

EXPLANATION *** A DIFFERENT SORT OF SEQUENCE

2) In the next examples, what are the next two numbers in the sequence? Is there a pattern?
Can you describe how you work out the next numbers in the sequence? If you can say how
you do it then you have an algorithm for the sequence. The algorithms are perhaps not as
straightforward to work out as our previous examples.

i. *** 0 2 1 3 2 4 3 5 …

ii. *** 1 1 2 3 5 8 13 …

The sequence in ii) is called the Fibonacci sequence. We shall be making use of the Fibonacci
sequence and some of its applications in the real world, when we are looking at pictures and
regular shapes in ‘action geometry’ later in the Course.

EXPLANATION**** GENERALISING IN SIMPLE ALGEBRA

3) **** Another way to describe the algorithm is in a form from algebra where we would say:
In a) the rth number is r,
In b) the rth number is: double r, or 2 times r, or 2 multiplied by r, or we may say the rth number
is 2 x r or 2r. (These are just different ways of saying or writing the same thing).

 Express in terms of r as in b) the rth number in sequences c) to k)?
4) **** Write the first 5 numbers in the following sequences where the algorithm to work out

the rth number is described in an algebraic form as:
a. r+1 (1 +1 =2, 2 + 1 = 3, …) => 2, 3, 4, 5, 6…
b. 3 + r
c. 2 x r – 1
d. 2 x r + 3
e. r x r – 1

*is the difficulty rating.

