

UCL/CAS Training for Teachers

Algorithms and Programming Module 1

“When I use a word,” Humpty Dumpty said in rather a scornful tone,

“It means just what I choose it to mean --- neither more nor less.”

- Lewis Carroll, Alice’s Adventures in Wonderland &Through the Looking-Glass

Table 2: Defining or Naming the function square or sq with arguments 1, 2, 3 …

square1 or

sq1 -> fd1 lt

 fd1 lt

 fd1 lt

 fd1 lt

WORKBOOK 3

UNPLUGGED PROGRAMMING

CONTROL STRUCTURE: FUNCTIONS

LINES, SQUARES, BUILDING BLOCKS

CRACKING THE CODE

COMPUTATIONAL THINKING

 Addressed to Teachers
Activities are graded: easy to hard – 0 to 5*. You should attempt every activity marked without
a star or marked with one *.

CONTENTS

Computational Thinking and Programming. How it Comes Together 3

Functions with Arguments .. 3

User Functions.. 3

A Simple user-function without Arguments about turn .. 4

User-functions with Arguments .. 4

Defining or Naming a function With Arguments square1, 2, 3 … or sq1, 2, 3… 5

Definition of the function fetch1,2,3, or fe1,2,3 ... 6

Mission 1 Programming with Our User-functions .. 7

Mission 2 Check your drawings ... 12

Mission 3 Programming with Our User-functions – Crack the Code.................................. 13

Mission 4 Check your drawings ... 16

Mission 5: Drawing with Penup (up) and Pendown (Down) ... 17

Two More Instructions: up and down --- to help us Move without Drawing 17

Our toolbox: Instructions and Programming Control Structures ... 17

Mission 6: More Functions without Arguments – Letters and Words 20

Mission 7: Different Structures for Capital Letters ... 23

Our toolbox: Instructions and Programming Control Structures ... 23

Mission 8: Other Algorithms for Drawing letters ... 25

A User-function rectangle or re .. 25

COMPUTATIONAL THINKING AND PROGRAMMING. HOW IT COMES TOGETHER

 In the simple rectilinear world (straight line and right-angle turn) that our toolbox is designed

to traverse for now, two elementary building blocks have stood out in addition to the three

basic moves of our pet/robot: the RETURN line and the RETURN square. Both have symmetric

representations illustrated by RETURN programs (1) and (2):

 repeat 4[fd1 lt]………………program(1)

 repeat 2[fd1 lt lt]………program(2)

They are represented in Table 1 in their symmetric forms and written in shorthand form in

UPL. We now take these two programs a step further by defining them as user-functions and

using their user- function forms as instructions in our toolbox.

FUNCTIONS WITH ARGUMENTS

We employ the function control structure in programming in order to have a toolbox which

we can use to implement fully computational thinking in problem solving by programming.

It’s the control structure which enables us to make the building blocks of programming and,

in our case, the building blocks of our drawings, because our programs are designed to have

graphical results. In our toolbox the instructions

 forward1 or fd1 for short,

 left turn, or lt

 right turn or rt

are also system-functions: names that stand for quite complicated programs, (which we

don’t see (abstraction) -- written in machine code). The user-functions that we are going to

create are like forward1 in that they use arguments 1,2,3,... We write the code in UPL to

define the user-function in UPL, and then, as Humpty Dumpty says, the function name

means what we say it means (in the definition). When the time comes to switch to the

screen, we say what we mean – that is, define the function and give it a name -- in Scratch,

Python, Coffeescript or Logo.

 USER FUNCTIONS

The instructions in our toolbox, with the programming control structures, sequence and repetition

give us the basis for working out how to build programs which draw diagrams and structures. We can

create our own instructions (tools), which we think will improve or extend our drawing capability, and

importantly, make it easier for us to build and read our programs. We do this by choosing a name for

a user-function to represent such a program of instructions and making use of that name as an extra

instruction – a user-function -- in our toolbox. Simply, we give a name to a program, and use that name

as an (shorthand) instruction instead of writing out the code every time we want to use it.

A SIMPLE USER-FUNCTION WITHOUT ARGUMENTS ABOUT TURN

But first, we define a very simple user-function to add to our toolbox. Often when drawing we want

to turn and face in the opposite direction. To do this we could use the instruction (system-function)

lt twice. So, for example, in program(2) in the return unit line program we have:

repeat 2 [fd1 lt lt]…………program(2)

If we define a user-function about turn or at for short as

about turn or at -> lt lt

using the symbol -> to mean ‘is defined as’:

We can then write at instead of lt lt in program(2) as

repeat 2 [fd1 at]…………program(2a)

or wherever these two instructions occur. This doesn’t save us much, but it is a simple example of a

user-function without arguments, which we can add to our toolbox. We will define more useful

functions without arguments later in this Workbook.

USER-FUNCTIONS WITH ARGUMENTS

Table 1 Building Blocks: RETURN Unit Square and RETURN Unit line

instruction:

square1 or sq1

fd1 lt

fd1 lt

fd1 lt

fd1 lt

repeat 4[fd1 lt]

Instruction:

fetch1 or fe1

fd1 at

fd1 at

repeat 2[fd1 at]

We use these two programs to illustrate how we define a function with a single argument like the

system-function forward or fd with argument values 1,2,3,… and the user-function fetch or fe

with arguments 1,2,3,… which we define below.

DEFINING OR NAMING A FUNCTION WITH ARGUMENTS SQUARE1, 2, 3 … OR SQ1, 2, 3…

“When I use a word,” Humpty Dumpty said in rather a scornful tone,
“It means just what I choose it to mean --- neither more nor less.”

--- Lewis Carroll, Alice’s Adventures in Wonderland &Through the Looking-Glass

square or sq is the function name for the program. Together with a parameter p, where p

(stands for paces) and can be replaced by argument values 1, 2, 3 … which determine the size of the

square, we can define the function as follows. We write:

sqp -> fdp lt fdp lt fdp lt fdp lt

or equivalently repeat 4[fdp lt]

We include this definition as follows in Table 2, using the symbol -> to mean ‘is defined as’:

Table 2: function with arguments

 squarep -> or

 sqp -> fdp lt

 fdp lt

 fdp lt

 fdp lt

Definition of function sqp

Where p can take values
1,2,3,…

Instruction: sq1

Building block: unit
square (Return

program)

Instruction: sq2

Building block: square with side 2
paces (Return program)

Representation of the four repeats of
[fd2 lt]

 Once we have defined the function sq, we are no longer concerned with the details of the

program it represents --- we just use sq1 or sq2 or sq3,… as an instruction from our tool

box for our pet robot to draw a square with side length 1, 2, 3,… paces as shown in Table 2, starting

and finishing at the position and direction that the pet/robot is currently holding. What is important

is that the drawing of the square whenever the instruction sq1, or sq2 or sq3,… is used

executes exactly the code we have used to define it.

 What is important at this stage is that learners know what the instructions sq1, sq2,

sq3 … mean and can use them as instructions in their code. Function definitions can be left

to be formally included in code when we make the transition to programming at the screen.

 The special feature of a function with an argument is that we use just one (formal) definition

to include all possible values of the arguments 1, 2, 3… We have included the formal definition

for user-functions in UPL for completeness. When we move to the screen we must define the

user-functions formally in Scratch 2.0/ Python 3/Coffeescript/Logo in whichever language we

are using.

DEFINITION OF THE FUNCTION FETCH1,2,3, OR FE1,2,3

We also introduce another useful user-function, the RETURN program of fetch or fe, which like

forward has different arguments 1,2,3… We call this user-function fetch or fe for short. We

chose fetch as the name for this function, because it’s like the command you might give to your

pet dog to retrieve a stick or ball that you have thrown, and return it to you (and your dog will probably

turn to face the same way ready to go again. (A RETURN function). It is good practice to name functions

to describe, and so remind us of, what they do.

Table 3 Definition of function fetch, or fe with parameter p and arguments

 1, 2, 3 …

fep -> fdp at fdp at where p can take values 1, 2, 3,…

fetch1

fe1

fetch2

fe2

fetch3

fe3

MISSION 1 PROGRAMMING WITH OUR USER-FUNCTIONS

Example 1. Draw a capital P. (RETURN program) with our toolbox: fd1, lt, rt, and user-

functions/instructions: about turn or at, square or sq, fetch or fe:

Table 4

Code Drawing

lt fd1 rt

sq1

rt fd1 lt

lt fd1 rt sq1 rt fd1 lt……………(RETURN) program(3)

Example 2. using our toolbox: fd1, lt, rt, sq, fe

 Draw a capital L (RETURN program).

Table 5

Code Drawing

fe1

lt

fe2

rt

fe1 lt fe2 rt ……………(RETURN) program(4)

Read, Track and Crack the Code for the programs in Table 6:

Table 6: Crack the Code: UPL programs – functions and repeats

Return
Program

?
1 lt fe2 rt Yes

2 lt lt fe2 at

3 rt fe1 lt

4 * fe1 lt fe1 lt fe1 lt fe1 lt

5 * lt fd1 rt sq1 rt fd1 lt

6 sq2

7 lt fd2 lt sq1

8 * lt fd2 lt sq1 lt fd2 lt

9 ** rt sq1 at sq1 rt

10 repeat 2[at fd2]

11 * fe1 rt fe2 rt fe1at

12 ** sq1 fd1 sq1 fd1

Table 7 : Read, Track and Crack the Code – functions and repeats

lt fe2 rt

lt lt fe2 at

rt fe1 lt

1 2 3

* fe1 lt fe1 lt fe1 lt

fe1 lt

* lt fd1 rt sq1 rt fd1

lt

sq2

4 5 6

Table 7 cont’d: Read, Track and Crack the Code

lt fd2 lt sq1

* lt fd2 lt sq1 lt fd2

lt

** rt sq1 at sq1 rt

7 8 9

repeat 2[at fd2]

* fe1 rt fe2 rt fe1 at

** sq1 fd1 sq1 fd1

10 11 12

MISSION 2 CHECK YOUR DRAWINGS

Match your drawings in Table 7 with those in the Table 9, and enter the results in Table 8 below. For

example, Table7.1 matches Table 9.E.

Table 8

Table

7

1

2

3

4

5

6

7

8

9

10

11

12

Table

9

E

Table 9

A B C

D E F

G H I

J K L

MISSION 3 PROGRAMMING WITH OUR USER-FUNCTIONS – CRACK THE CODE

Read, Track and Crack the Code for the programs in Table 10:

Table 10: Crack the Code: UPL programs – functions and repeats

Return
Program

?

1 * sq1 at sq1 at

2 * repeat 2[lt fd1 rt fe1]

3 * repeat 2[fe2 lt] at

4 ** repeat 4[sq1 lt]

5 ** repeat 4[fd1 lt fd1 rt fd1 lt]

6 ** repeat 4[fe1 lt]

7 ** fd1 lt repeat 2[sq1 fd1]

8 *** sq2 fd1 lt fd1 rt repeat 4[fe1 lt] fd1 rt fd1

at

9 ** repeat 2[sq1 fd1] at fd2 at

10 *** fd1 lt repeat 2[sq1 fd1] lt fd1 lt fd2 lt

11 repeat 2[fd2 lt fd1 lt]

12 ** fd1 lt repeat 2[fd2 lt fd1 lt] lt fd1 at

Table 11 : Read, Track and Crack the Code – functions and repetition

* sq1 at sq1 at

* repeat 2[lt fd1 rt

fe1]

* repeat 2[fe2 lt] at

1 2 3

** repeat 4[sq1 lt]

** repeat 4[fd1 lt fd1

rt fd1 lt]

** repeat 4[fe1 lt]

4 5 6

Table 11 cont’d: Read, Track and Crack the Code – functions and repetition

** fd1 lt repeat 2[sq1

fd1]

*** sq2 fd1 lt fd1 rt

repeat 4[fe1 lt] fd1 rt

fd1 at

** repeat 2[sq1 fd1]

at fd2 at

7 8 9

***fd1 lt repeat 2[sq1

fd1] lt fd1 lt fd2 lt

repeat 2[fd2 lt fd1 lt]

**fd1 lt repeat 2[fd2

lt fd1 lt] lt fd1 at

10 11 12

MISSION 4 CHECK YOUR DRAWINGS

Match your drawings in Table 11 with those in the Table 13, and enter the results in Table 12 below.

Table 12

Table

11

1

2

3

4

5

6

7

8

9

10

11

12

Table

13

Table 13

A B C

D E F

G H I

J K L

MISSION 5: DRAWING WITH PENUP (UP) AND PENDOWN (DOWN)

TWO MORE INSTRUCTIONS: UP AND DOWN --- TO HELP US MOVE WITHOUT DRAWING

We add two more instructions for our pet/robot from the pool of operations, common to Scratch,

Python, Coffeescript and Logo, which are essential tools for drawing when we want to move the

pet/robot from one position to another without drawing. This is particularly useful when we are

trying to implement a human algorithm in our problem solving approach, where a human can move

to any position from another on the paper without drawing.

These instructions are:

 penup or up for short. Raises the pen. Instructions to move the pet/robot after this instruction

do not draw until the pendown instruction is met.

 pendown or down or pd for short. Lowers the pen. Instructions to move the pet/robot

after this instruction draw until the penup instruction is met.

OUR TOOLBOX: INSTRUCTIONS AND PROGRAMMING CONTROL STRUCTURES

PROGRAM INSTRUCTIONS

1) forward1,2.3,… or fd1,2,3,…

2) left turn or lt

3) right turn or rt,

4) about turn or at,

5) penup or up for short.

6) pendown or down for short.

7) square1,2,3… or sq1,2,3…

8) fetch1,2,3… fe1,2,3…

EXAMPLE 1 Crack the Code

up lt fd2 at down fd2 up lt fd2 at down fd1 up at fd1 lt fd1

lt down fd1 up at fd1 lt fd1 lt

In this example, we have programmed the pet/robot to copy the actions of a human drawing a

capital ‘F’. Human and pet/robot are assumed to start from the same place (empty arrow head).

Unfortunately, the pet/robot is constrained to turn and move along the grid (for the time being) in

order to take up positions on the grid, so adopting a human algorithm for drawing may not be a

‘good’ program. See example 2, where the pet/robot takes advantage of a symmetrical drawing of

‘F’, and can make use of the user-function fe.

Table 14 Copying a Human Drawing an ‘F’

up lt fd2 at

down fd2

up lt fd2 at

down fd1

Move to the top of the

‘F’

Draw the vertical stroke

Move to the top of the

‘F’ again

Draw the

horizontal stroke

up at fd1 lt

fd1 lt

down fd1

up at fd1 lt

fd1 lt

Move to the mid-point

of the vertical line

Draw the horizontal
stroke

Return to the starting

point and complete the
RETURN program

A much simpler program to do the same thing using a drawing symmetry in the letter F.

Table 15 Program to suit a pet/robot drawing an ‘F’ using symmetry in the drawing

repeat 2[lt fd1 rt fe1]

rt fd2 lt

Read, Track and Crack the Code for the programs in Table 16 :

Table 16 : Crack the Code: UPL programs – functions and repeats

Return
Program ?

1 * up lt fd2 at down fd2 (human)

2 lt fe2 rt

3 * up lt fd2 at down fd2 lt fd1 (human)

4 ** up lt fd2 at down fd2 up at fd2 rt down fd2

rt fd2 rt fd2 (human)

5 repeat 4[fd2 lt]

6 ** up lt fd2 at down fd2 up at fd2 lt fd1 at

down fd2 (human)

 7) * Add code to programs in 1, 3 in Table 16 to make them RETURN programs.

 8) * Write code suited to a pet/robot to produce a RETURN program for the drawing produced by

the code in 3 in Table 16. Use the user-function fe in your code if you can.

 9) ** Add code to programs in 4, 6 in Table 16 to make them RETURN programs.

 10) ** Write code suited to a pet/robot to produce a RETURN program for the drawing produced

by the code in 6 in Table 16. Use the user-function fe in your code if you can.

 11) (a) *** Write the code to copy how you draw a capital ‘E’.

 (b) *** Write code suited to a pet/robot to draw a capital ‘E’.

MISSION 6: MORE FUNCTIONS WITHOUT ARGUMENTS – LETTERS AND WORDS

We have written the RETURN code to draw capital L, I, T, F, E, H, P.

Now we can define a user-function without arguments for each letter:

capitalL or cl (for short) -> fe1 lt fe2 rt

Fill in the code to define the functions for the capital letters in Table 17:

Table 17 : functions without arguments for capital letters

Return
Program ?

1 (Example for capital L) cl -> fe1 lt fe2 rt

2 cf ->

3 ci ->

4 ce ->

5 ct ->

6 ch ->

7 cp ->

We have a number of capital letters that we can use to write words with. But we decide to space

them out with equal spaces between letters. This touches on the subject of font design.

Example 3. Crack the Code:

cl up fd2 down ce up fd3 down ct

Table 18: Capital Letters

cl up fd2 down ce up fd3 down ct

Crack the Code

With our Toolbox expanded to include functions: ce, cf, ch, ci, cl, cp, and ct

which draw the corresponding capital letters as RETURN programs starting on a common base, crack

the code for the word programs in Table 19 (except for 6)).

Table 19

1) ct up fd2 down ch up fd2 down ce

2) cp up fd2 down ce up fd2 down ct

3) ct up fd2 down ci up fd1 down cp

4) *** ch up fd2 down cl cf

5) *** ct up fd2 down ce repeat 2[up fd2
down cl]

6) ****fe2 repeat 2[lt fd1 rt fe2] rt
 repeat 2[lt fd1 rt fe2]

7) ***Write programs for the words a) HILL b) FEE c) FEET

8) **** What extra repetition do you notice in Table19, 6). What extra instruction do we need

to add to be able to use the repeat statement to reflect the final symmetry in the

drawing process?

MISSION 7: DIFFERENT STRUCTURES FOR CAPITAL LETTERS

OUR TOOLBOX: INSTRUCTIONS AND PROGRAMMING CONTROL STRUCTURES

We summarise our toolbox here:

PROGRAM INSTRUCTIONS

9) forward1,2.3,… or fd1,2,3,…

10) left turn or lt

11) right turn or rt,

USER-FUNCTION INSTRUCTIONS

12) about turn or at

13) square1,2,3… or sq1,2,3…

14) fetch1,2,3… or fe1,2,3…

PROGRAMMING CONTROL STRUCTURES

 sequence (in the code)

 repetition (looking for symmetry in the drawing to use repetition in the code AT)

 functions (choosing and defining useful building blocks and defining user-functions AT and A)

Crack the code in Table 20:
1)

Table 20

A

repeat 4[fd1 lt fd1 rt fd1

lt]

B

fd3 lt fd1 lt fd2 rt fd4 lt

fd1 lt fd5 lt

Programs in Table 20 A, B illustrate a different approach, and therefore we use different algorithms

for the programs which produce the shape/letter drawings. It’s more of an ‘outline the block shape’

approach. Notice we have made them RETURN programs. And we have fitted the capital letter L to

fill a Fibonacci box, of dimensions 5 paces high and 3 paces wide.

2) Use our Toolbox, with a block outline approach to fill the same Fibonacci box, to write RETURN

programs for capital letters T, F, E and H.

3) ** Use a Fibonacci box 5 paces wide and 3 paces high to design an outline block version of capital

letter M or W. Use our Toolbox to write a program to draw your design

MISSION 8: OTHER ALGORITHMS FOR DRAWING LETTERS

Rather than taking an outline approach as our algorithm to draw the capital letters and other shapes

as we have done in Mission 6, we might adopt an algorithm which involved ‘sticking’ together

different sized rectangles, or one in which we just ‘stick’ squares together to form the letters.

A USER-FUNCTION RECTANGLE OR RE

In this task we define another user-function: rectangle or re -- with arguments 1, 2, 3 …

(paces) -- which, will be useful later to complete the Aqado board.

Formally we can define rectangle or re for short as a user-function with a parameter p,

which stands for arguments 1, 2, 3…:

rectanglep or rep -> repeat 2[fdp lt fd1 lt]……………definition

But in this task, all we need to know is that in the user-function we have named rep, we can replace

the p in rep by an argument 1, 2, 3 … to give re1, re2, re3 … and these in turn will draw

the rectangles in Table 21. Note: the rectangle will be drawn from the point and in the direction the

pet/robot is facing when the user-function is called as an instruction.

 For example, when we use the user-function instruction re3, we substitute a 3 for p on both

sides of the definition ->

so that re3 is equivalent to repeat 2[fd3 lt fd1 lt]

Table 21

A

re1

B

re2

C

re3

D

fd1 lt re3

Note: rectanglep or rep

1. is defined so that every rectangle has the same width, 1 pace

2. is a RETURN program. (This means that when we use the function say, re4 that the rectangle

is drawn from the point the pet/robot is in, and in the direction it is facing, and the pet/robot

returns to that position and direction. Examine carefully the program and drawing in Table

21D).

Crack the code in Table 22:

3. fd1 lt re5 rt re2 at fd1 at

4. re3 lt fd1 rt fd1 lt re4 lt fd1 lt fd1 lt

5. In Table 22, use our toolbox with user-function rectanglep or rep to draw the capital

letters I, T, F, and E in Fibonacci boxes of height 5 paces and width 3 paces.
6. In Table 22, use our toolbox with the with user-function unit square sq1.

Write a program to ‘stick’ unit squares together to draw the capital letters T, H in Fibonacci

boxes of height 5 paces and width 3 paces.

Table 22

3. fd1 lt re5

rt re2 at fd1

at

4. re3 lt fd1

rt fd1 lt re4

lt fd1 lt fd1

lt

5.Capital I

5.Capital T

5. Capital F 5. Capital E 6. Capital T 6. Capital H

